منابع مشابه
On the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملHopf–cyclic Homology and Relative Cyclic Homology of Hopf–galois Extensions
The determination of cyclic (co)homology of a given algebra is a quite important and difficult problem. Let us briefly recall some of the results obtained that are somehow related to our paper. The cyclic homology of group algebras over fields of characteristic 0 was computed by Burghelea, [3]. For a complete algebraic proof of Burghelea’s result the reader is referred to [19], while a relative...
متن کاملCyclic Homology of Hopf Comodule Algebras and Hopf Module Coalgebras
In this paper we construct a cylindrical module A♮H for an Hcomodule algebra A, where the antipode of the Hopf algebra H is bijective. We show that the cyclic module associated to the diagonal of A♮H is isomorphic with the cyclic module of the crossed product algebra A ⋊H. This enables us to derive a spectral sequence for the cyclic homology of the crossed product algebra. We also construct a c...
متن کاملHopf-cyclic Homology with Contramodule Coefficients
A new class of coefficients for the Hopf-cyclic homology of module algebras and coalgebras is introduced. These coefficients, termed stable anti-Yetter-Drinfeld contramodules, are both modules and contramodules of a Hopf algebra that satisfy certain compatibility conditions. 1. Introduction. It has been demonstrated in [8], [9] that the Hopf-cyclic homology developed by Connes and Moscovici [5]...
متن کاملHopf Algebra Equivariant Cyclic Homology and Cyclic Homology of Crossed Product Algebras
We introduce the cylindrical module A♮H, where H is a Hopf algebra with S2 = idH and A is a Hopf module algebra over H. We show that there exists a cyclic map between the cyclic module of the crossed product algebra A⋊H and ∆(A♮H), the cyclic module related to the diagonal of A♮H. In the cocommutative case, ∆(A♮H) ∼= C•(A ⋊H). Finally we approximate ∆(A♮H) by a spectral sequence and we give an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: K-Theory
سال: 2006
ISSN: 1573-0514,0920-3036
DOI: 10.1007/s10977-006-0002-7